# EFSA activities on TSE in 2018-2019

18<sup>th</sup> TSE EURL Annual Meeting Torino, IT 12-13 September 2019







#### **CONTENTS**

- CWD III opinion
- 2016-8 TSE EU summary reports
- Collagen & Gelatine





# ToR1

Revision of the state of knowledge, considering new sci lata, about the differences:

- september a) between the strains found in different species in merica and in Europe and
- er and red deer in b) between the strains found so far in moor Europe;
- c) with the main emphasis on trans (transmission paths), pathogenicity and prevalence nerent strains and susceptibility 6 of the different species/ger

## ToR2

To revise the new scier TOIL dence on the zoonotic potential of CWD; to assess the transmission to humans through the 100 consumption of nd meat products of cervids and to provide possible additional control measures to address recommend the risks ide

# ToR3

Identify risk factors that can facilitate the spread of CWD in the European Union given the current situation of the disease.





- Literature searches: update form previous CWD opinions. *in vivo* studies *in vitro* studies epidemiology, risk, introduction, spread
- Contacted researchers in vivo: 17 research groups from FR, IT, ES, UK, DE, NL, Can and USA in vitro: 11 research groups from FR, IT, ES, UK, SE, Can and USA
- Surveillance data: EFSA database
- List of groups of risk factors: evidence appraised scoredbased system from weakest (biological plausible, hypothetical) to strongest (intervention studies)
- Personal communications: NRLs, individual researchers





#### **TOR1: TRANSMISSIBILITY ACROSS SPECIES BARRIER**

|                    |                                |     | CWD isolates |         |       |        |           |         |       |                   |                   |       |          |          |       |  |  |  |  |
|--------------------|--------------------------------|-----|--------------|---------|-------|--------|-----------|---------|-------|-------------------|-------------------|-------|----------|----------|-------|--|--|--|--|
|                    | Country                        | USA |              |         |       | Canada |           |         |       |                   |                   | N     | Finland  |          |       |  |  |  |  |
| Species<br>modeled | Rodent models                  | EIK | Mule deer    | WT deer | Moose | EIK    | Mule deer | WT deer | Moose | Red deer<br>(exn) | Reindeer<br>(exp) | Moose | Red deer | Reindeer | Moose |  |  |  |  |
| Mouse              | conventional<br>mice           | Y/N | Y/N          | Y       |       | N      | Y/N       | ong/N   |       |                   |                   | Y     |          | Y        |       |  |  |  |  |
| Mouse              | tg-mousePrP                    | Y   |              |         |       | Y      |           | ong     |       |                   |                   | Y     | ong      | Y        |       |  |  |  |  |
| Hamster            | hamsters                       |     |              |         |       |        |           | ong     |       |                   |                   | ong   |          | ong      |       |  |  |  |  |
| Hamster            | tg-hamsterPrP                  |     |              | Y       |       | ong    |           |         |       |                   |                   | Ν     |          | ong      |       |  |  |  |  |
| Bank vole          | bank voles                     | Y   | Y            | Y       |       | Y      | Y         | Y       | Y     |                   |                   | Y     | Y        | Y        | Y     |  |  |  |  |
| Deer               | tg-cervidPrP<br>(all variants) | Y   | Y            | Y       | Y     | Y      | Y         | Y       | Y     | Y                 |                   | Y     | ong      | Y        | ong   |  |  |  |  |
| Bovine             | tg-bovinePrP                   | Ν   |              | Y/N     |       | Y/N    | Y         | Y/N     |       | Υ                 |                   | ong/N | ong      | ong      | ong   |  |  |  |  |
| Ovine              | tg-sheepPrP<br>(all variants)  | Y   |              | ong     |       | ong/N  | N         | Y       | N     |                   |                   | Y/N   | ong      | ong      | ong   |  |  |  |  |
| Porcine            | tg-porcinePrP                  |     |              |         |       | ong/N  |           | ong/N   |       |                   |                   | ong   | ong      | ong      |       |  |  |  |  |
| Human              | tg-humanPrP (all variants)     | N   | N            |         |       | ong/N  | N         | ong/N   | N     | Ν                 | N                 | ong   | ong      | ong      |       |  |  |  |  |
| Vulture            | tg-vulturePrP                  |     |              |         |       |        |           |         |       |                   |                   | ong   | ong      | ong      |       |  |  |  |  |





#### TOR2: TRANSMISSIBILITY TO HUMANS: IN VITRO

| Cell-free conversion assay                                 | Very low levels of human recombinant PrP is<br>converted by deer CWD PrP <sup>sc</sup> (wdPrP <sup>sc</sup> ), less than by<br>bovine BSE PrP (bo-PrP <sup>bse</sup> ) | Raymond et al., 2000   |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| In vitro conversion of GdnHCl-<br>treated PrP <sup>c</sup> | Elk CWD converts human PrP, more easily than bovine, sheep or mouse PrP (brain homogenate)                                                                             | Li et al., 2007        |
| PMCA                                                       | Conversion of human PrP enhanced by preliminary<br>PMCA amplification cycles on cervid PrP                                                                             | Barria et al., 2011    |
| SDS-based fibrillation assay                               | No human recombinant PrP conversion by wdPrPsc, while converted by bo-PrPbse                                                                                           | Luers et al., 2013     |
| huPrP and 293F cells expressing<br>human PrP / PMCA        | Conversion of human PrP less efficient than BSE prion, 129 VV < 129 MM                                                                                                 | Barria et al., 2014    |
| RT-QuiC                                                    | Very efficient conversion of rec human PrP by CWD samples (better than BSE)                                                                                            | Davenport et al., 2014 |
| PMCA                                                       | Efficient conversion of human PrP, depending on human genotype, cervid genotype and cervid species                                                                     | Barria et al., 2018    |





## **TOR2: TRANSMISSIBILITY TO HUMANS IN VIVO**

|   | Tg40 (MM, 1x)      | No transmission from elk CWD                               | -               | Kong et al., 2005         |
|---|--------------------|------------------------------------------------------------|-----------------|---------------------------|
|   | Tg1 (MM, 2x)       |                                                            |                 |                           |
| _ | Tg440 (MM, 2x)     | No transmission from 4 elk, 2 MD and 2 WTD isolates        | -               | Tamgüney et al., 2006     |
|   | Tg35 (MM, 2x)      | No transmission from MD CWD                                | -               | Sandberg et al., 2010     |
|   | Tg45 (MM, 4x)      |                                                            |                 |                           |
| _ | Tg152 (VV, 6x)     |                                                            |                 |                           |
|   | TgHu MM (1x)       | No transmission                                            | -               | Wilson et al., 2012       |
|   | TgHu MV (1x)       |                                                            |                 |                           |
|   | TgHu VV (1x)       |                                                            |                 |                           |
|   | Tg40 (MM, 1x)      | No transmission of CWD, except in mice expressing          | - (+ in         | Kurt et al., 2015         |
|   |                    | chimeric human PrP (expressing 4 elk AA)                   | chimeric)       |                           |
|   | Tg66 (MM, 8-16x)   | Clinical suspicion but no IHC or immunoblot confirmation.  | +/-             | Race et al., 2019         |
|   | TgRM (MM, 2-4x)    | Faint positive RT-QuiC reactions                           |                 |                           |
|   | Tg66 (MM, 8-16x)   | No transmission                                            | -               | Mitchell et al. (2011)    |
|   | TgRM (MM, 2-4x)    | No transmission                                            | -               | Cervenakova et al. (2014) |
|   | Squirrel monkey    | IC transmission from MD CWD                                | +               | Marsh et al., 2005        |
|   | Squirrel monkey    | IC and oral transmission to squirrel monkey, no IC or oral | + Squirrel      | Race et al., 2009         |
| _ | cynomolgus macaque | transmission to macaques after 6 years                     | - macaque       |                           |
|   | Squirrel monkey    | IC and oral transmission to squirrel monkey, accelerated   | + Squirrel      | Race et al., 2014         |
|   | cynomolgus macaque | transmission after secondary passage. No IC or oral        | - macaque       |                           |
|   |                    | transmission to macaques after 10 years                    |                 |                           |
|   | Squirrel monkey    | IC and oral transmission to squirrel monkey, no IC or oral | + Squirrel      | Race et al., 2018         |
|   | cynomolgus macaque | transmission to macaques even after 13 years               | - macaque       |                           |
|   | Cynomolgus macaque | No IC transmission to macaques after 7 years               | - macaque       | Comoy et al., 2015        |
|   | Cynomolgus macaque | No transmission                                            | -               | Schmaedicke et al., 2012  |
| _ |                    |                                                            |                 | (PRION)                   |
|   | Cynomolgus macaque | Wasting and mild neurological signs in IC and orally       | + with clinical | Czub et al., 2018 (PRION  |
|   |                    | challenged macaques.                                       | signs no        | oral)                     |
|   |                    |                                                            | pathognomonic   |                           |
|   |                    |                                                            | for BSE         | 7                         |
|   |                    |                                                            |                 |                           |





#### **TOR2: THE RISK OF HUMANS TO CWD**

- Epidemiological studies: association between human and animals TSE
- Risk of CWD to humans: probability of transmission to humans through the handling and/or consumption of meat and meat products from cervids. Unknowns:
  - No tissue infectivity data
  - uptake of the infectious agent by a new host
  - amount of agent present in food portions
  - age of the host at exposure
  - possible potentiating effects of intercurrent disease or injury of the host
- Exposure to the CWD agents:
  - at individual level: consumption
  - at population level: strains, species, prevalence





#### **TOR3: RISK FACTORS SPREAD**

- Criteria for selection:
  - ✓ biological plausibility
  - ✓ hypothetical: epi studies
  - Evidence: association with disease
- Strength of evidence:
  - from biological plausibility to intervention studies
- Preventability: risk management options
- Disease forms (continuum):
  - Contagious: peripheral distribution (CWD in NA, CS). Horizontal transmission via live animals, human activity, fomites and/or scavengers or via the feed chain.
     Vs
  - non-contagious: little or no detectable involvement of peripheral tissues (BSE, atypical/Nor98 scrapie). Environmental contamination





## **TOR3: RISK FACTORS SPREAD**

- **1. Natural movement of live wild deer from infected areas**
- 2. Man-mediated movement of live farmed/free-ranging deer from infected areas
- 3. Failure to separate live farmed and free ranging deer
- 4. High deer density
- 5. Species-specific social organization
- 6. Sex-related behaviours
- 7. Natural or man-mediated animal aggregation
- 8. Consumption of forage grown on contaminated soil
- 9. Fallen stock or inappropriate disposal of carcasses and slaughter by-products
- 10. Movement of other animals (working dogs, scavengers, predators)
- 11. Transfer of inanimate vehicles of contamination (fomites)
- **12. Environmental persistence of prions**
- **13. Host genetics**





#### **NEW DATA COLLECTION SYSTEM**

# TSE data collection tool v 1.3.5

Direct into the tool XML files



# Wiki manual: GitHub



#### Manual for the reporting of surveillance data on Transmissible Spongiform Encephalopathies (TSE) using the EFSA TSE Data Reporting Tool

The TSE data reporting tool is an open source Java client tool running on Windows and is developed for members of the TSE Network for the reporting of surveillance data on TSEs according to Regulation (EC) 999/2001 (part I.A, chapter B.I of annex III); in particular, for Bovine Spongiform Encephalopathy (BSE) in bovine animals, Scrapie in small runniants (sheep and goats), random genotyping in sheep. Chronic Wasting Disease (CWD) in cervids and TSE in other species.

The tool allows countries to submit and edit their data and automatically upload them into the EFSA Data Collection Framework (DCF) as XML data files.

All the documentation of the TSE reporting tool can be found in this wiki that will automatically open in your default internet browser every time you open the TSE data reporting tool. In addition, a manual for data reporting via XML file (for users not using the tool) is available at this link.

Please note that, in order to be able to upload and submit the data to DCF, a data provider account is required. If you are not registered as a data provider for the TSE data collection please send an









Greece Croatia Hungary Ireland Italy Lithuani Luxemb Labria Malta Netherla Poland Portugal Romanii Sweden Slovenia Slovenia

479 1,146 5,271 4,541

7,38

3.923

3,031

9,268

694

90

473 898

12,620

3,63

1,962

519 1,079

12,638

3.452

3,649

9,362

980

3.611

3,707 1,230

11,149

1.05

4.14

3,45

1,26

375

47

86,210

1,068

#### **NEW DATA COLLECTION SYSTEM**

 Guidelines for reporting: XML, business rules, structure...

| $\leftarrow \rightarrow$ | С                             | 🔒 htt         | ps://dwh.e | fsa.europa.ei | u/bi/asp/N | Main.aspx    |              |           |          |           |               |            |            |           |            |           |            |           |             |             |          |           |            |           |            | * 6       | 0      | 1   |
|--------------------------|-------------------------------|---------------|------------|---------------|------------|--------------|--------------|-----------|----------|-----------|---------------|------------|------------|-----------|------------|-----------|------------|-----------|-------------|-------------|----------|-----------|------------|-----------|------------|-----------|--------|-----|
| Apps                     | 03                            | Outlook W     | leb App 🍵  | P InfoView    | 🔶 Googl    | le Scholar 【 | Scientific C | ommitte   | D Portal | Library 🔀 | Log in   Rese | archGate 🧧 | Defra AB   | Ps 🍸 Yaho | o 🐑 EF     | sajive 🔩  | Google Tra | duttore 🖪 | Sciforma Or | nline - H ( | 👌 Zenodo | MicroSt   | rategy 🧧   | Taleo 😽   | SClgen - A | n Autom   |        | 3   |
| ILE VIE                  | ਆਸ਼ ਨਰਸ਼ਸ਼ 21 ਲੋ,- 24 +- 13 ⊡ |               |            |               |            |              |              |           |          |           |               |            |            |           |            |           | >          |           |             |             |          |           |            |           |            |           |        |     |
|                          |                               |               |            |               |            |              |              |           |          |           |               | 01. BS     | E Mon      | thly Surv | eillanc    | e data    |            |           |             |             |          |           |            |           |            |           |        |     |
|                          |                               |               |            |               |            |              |              |           |          |           |               |            |            | Year      |            |           |            |           |             |             |          |           |            |           |            |           |        |     |
| _                        |                               |               |            |               |            |              | (AII)        |           |          |           |               |            |            |           |            |           |            |           |             |             | 2018     |           |            |           |            |           |        |     |
| _                        |                               |               |            |               |            |              |              |           |          |           |               |            |            |           |            |           |            |           |             |             |          |           |            |           |            |           |        |     |
|                          |                               |               |            |               |            |              |              |           |          |           |               |            |            | Month     |            |           |            |           |             |             |          |           |            |           |            |           |        |     |
|                          | (AI)                          |               |            | Jan           |            | Feb          |              | Mar       |          | Apr       |               | May        |            | Jun       |            | Jul       |            | Aug       |             | Sep         |          | Oct       |            | N         | w          | E         | Jec    |     |
| MSinon                   |                               | Month         |            | Jan           |            | Feb          |              | Mar       |          | Apr       |               | ilay       |            | Jun       |            | Jul       | 1          | Aug       |             | Sep         |          | Oct       |            | Nov       |            | Dec       |        | 1   |
| MS                       | 0                             | Country       | N Tests    | Positives     | N<br>Tests | Positives    | N Tests      | Positives | N Tests  | Positives | N Tests       | Positives  | N<br>Tests | Positives | N<br>Testa | Positives | N Tests    | Positives | N<br>Testa  | Positives   | N Tests  | Positives | N<br>Tests | Positives | N<br>Tests | Positives | N Test | ts  |
| EU                       | Au                            | stria         | 1,306      | 0             | 1,289      | 0            | 1,474        | 0         | 1,347    | 0         | 1,555         | 0          | 1,589      | 0         | 1,708      | 0         | 2,012      | 0         | 1,574       | 0           | 1,757    | 0         | 1,486      | 0         | 1,419      | 0         | 18,5   | 516 |
|                          | Be                            | lgium         | 2,300      | 0             | 2,094      | 0            | 2,701        | 0         | 2,792    | 0         | 2,530         | 0          | 2,023      | 0         | 1,792      | 0         | 1,977      | 0         | 1,855       | 0           | 1,951    | 0         | 1,857      | 0         | 2,095      | 0         | 25,9   | 67  |
|                          | Bu                            | igaria        | 3,332      | 0             | 3,824      | 0            | 2,853        | 0         | 2,574    | 0         | 2,270         | 0          | 1,786      | 0         | 1,157      | 0         | 1,568      | 0         | 2,273       | 0           | 3,254    | 0         | 3,111      | 0         | 2,951      | 0         | 30,9   | 153 |
|                          | Cyr                           | prus          | 150        | 0             | 131        | 0            | 125          | 0         | 94       | 0         | 95            | 0          | 90         | 0         | 127        | 0         | 196        | 0         | 123         | 0           | 134      | 0         | 115        | 0         | 159        | 0         | 1,5    | 639 |
|                          | Ca<br>Re                      | ech<br>public | 1,782      | 0             | 1,614      | 0            | 2,159        | 0         | 2,381    | 0         | 2,034         | 0          | 1,623      | 0         | 1,780      | 0         | 2,052      | 0         | 1,401       | 0           | 1,661    | 0         | 1,576      | 0         | 1,669      | 0         | 21,7   | 32  |
|                          | Ge                            | rmany         | 15,068     | 0             | 12,600     | 0            | 13,867       | 0         | 14,319   | 0         | 15,333        | 0          | 14,434     | 0         | 14,894     | 0         | 16,780     | 0         | 14,159      | 0           | 14,839   | 0         | 14,610     | 0         | 11,327     | 0         | 172,2  | 130 |
|                          | De                            | nmark         | 2,084      | 0             | 1,531      | 0            | 2,456        | 0         | 1,528    | 0         | 2,552         | 0          | 1,194      | 0         | 2,442      | 0         | 2,369      | 0         | 1,583       | 0           | 2,501    | 0         | 2,036      | 0         | 1,625      | 0         | 23,9   | 301 |
|                          | Est                           | tonia         | 368        | 0             | 248        | 0            | 264          | 0         | 267      | 0         | 349           | 0          | 260        | 0         | 334        | 0         | 412        | 0         | 259         | 0           | 329      | 0         | 255        | 0         | 259        | 0         | 3,6    | 604 |
|                          | Sp                            | ain           | 7,079      | 0             | 6,314      | 0            | 7,025        | 0         | 6,579    | 0         | 4,991         | 0          | 4,052      | 0         | 4,159      | 0         | 4,742      | 0         | 4,354       | 0           | 5,424    | 0         | 5,616      | 0         | 5,050      | 0         | 65,3   | :85 |
|                          | Fin                           | iland         | 1,069      | 0             | 960        | 0            | 1,017        | 0         | 1,106    | 0         | 1,251         | 0          | 850        | 0         | 693        | 0         | 790        | 0         | 768         | 0           | 1,091    | 0         | 880        | 0         | 841        | 0         | 11,3   | 116 |
|                          | Fra                           | ance          | 19,776     | 0             | 18,587     | 1            | 23,248       | 1         | 20,354   | 0         | 19,258        | 0          | 15,514     | 0         | 15,669     | 0         | 18,480     | 0         | 17,366      | 0           | 18,537   | 0         | 19,080     | 0         | 18,637     | 1         | 224,5  | 306 |
|                          |                               |               |            |               |            |              |              |           |          |           |               |            |            |           |            |           |            |           |             |             |          |           |            |           |            |           |        |     |

524 1,773 3,242

6.755

4,39

1.36

3,228

5.28

9,905

1,089

501 1,057

2,679

4,791

2,854 1,345

10.832

554

601

87,161

814 5 1,629

749

98,551

672

429 888

3,379

98,319

382 1,068

3,445

4,392

1,429

605

5,155 12,576

70,232

55,047 3,093 2,793

39,715

20.887

7.622

6,69

10,766

#### **TECHNICAL REPORT**



APPROVED: 9 July 2019 doi:10.2903/sp.efsa.2019.EN-1675

#### Guidelines for reporting surveillance data on Transmissible Spongiform Encephalopathies (TSE) in the EU within the framework of Regulation (EC) No 999/2001

European Food Safety Authority (EFSA), Mario Monguidi, Alban Shahaj and Anca-Violeta Stoicescu

#### Abstract

These guidelines are specifically aimed at guiding the reporting of information under the framework of Regulation (EC) No 999/2001/EC. The technical aspects for the reporting of surveillance data on Bovine Spongiform Encephalopathy in bovine animals, scrapie and genotyping in small ruminants (sheep and goats) and Chronic Wasting Disease in cervids are covered. The guidelines explain the individual data elements of the Standard Sample Description model which are relevant for the data collection on Transmissible Spongiform Encephalopathies. These guidelines are given in order to support the reporting countries in data submission using eXtensible Markup Language data file transfer through the Data Collection Framework according to the protocol described in the EFSA Guidance on Data Exchange.

© European Food Safety Authority, 2019

Microstrategy Dashboard: fixed reports to visualize data





#### **2017-8 TSE REPORTS: CATTLE**

#### 2017: EU + (NO + IS + CH) 2018: EU + (NO + IS + CH + MK)

## TESTED

- 2015-2018: 3-5% reduction per year
- 1,331,238 in 2017
- 1,181,997 in 2018.









#### **BSE CASES 2018**

| Country                                                                      | UK – classical 1 | FR - atypical 1        | FR – atypical 2 | FR – atypical 3 |  |  |  |  |  |
|------------------------------------------------------------------------------|------------------|------------------------|-----------------|-----------------|--|--|--|--|--|
| Surveillance target group                                                    | Fallen stock     | Emergency<br>Slaughter | Fallen stock    | Fallen stock    |  |  |  |  |  |
| Case type                                                                    | Classical        | L-BSE                  | H-BSE           | L-BSE           |  |  |  |  |  |
| Month and year of<br>birth                                                   | April 2013       | May 2010               | November 2001   | September 2008  |  |  |  |  |  |
| Age at detection (in months)                                                 | 65               | 92                     | 194             | 123             |  |  |  |  |  |
| BARB status                                                                  | Yes              | No                     | No              | No              |  |  |  |  |  |
| Clinical Symptoms                                                            | Falling,         | No clinical            | No clinical     | Aggressive      |  |  |  |  |  |
|                                                                              | recumbent        | symptoms               | symptoms        | animal          |  |  |  |  |  |
| Cattle type                                                                  | Beef             | Dairy                  | Beef            | Dairy           |  |  |  |  |  |
| Breed                                                                        | Aberdeen Angus   | Prim'Holstein          | Limousin        | Limousin        |  |  |  |  |  |
| Herd size                                                                    | 22               | 119                    | 30              | 296             |  |  |  |  |  |
| Herd type                                                                    | Beef             | Dairy                  | Suckling        | Beef            |  |  |  |  |  |
| BSE: bovine spongiform encephalopathy; H-BSE: H-type BSE; L-BSE: L-type BSE. |                  |                        |                 |                 |  |  |  |  |  |





## **BSE CASES 2013-2018**

|                          | 2013                | 2014                | 2015                | 2016            | 2017                | 2018                 |
|--------------------------|---------------------|---------------------|---------------------|-----------------|---------------------|----------------------|
| DE                       |                     | 2 (1H,1L)           |                     |                 |                     |                      |
| ES                       |                     | 1 (1C)<br>1 (1L)    | 1 (1L)              | 1(1H)           | 3 (1H, 2L)          |                      |
| FR                       | 2 (2H)              | 3 (1H,2L)           |                     | 1(1C)<br>3 (3H) | 2 (1H-1L)           | 3(2H-1L)             |
| RO                       |                     | 2 (2L)              |                     |                 |                     |                      |
| IE                       | 1 (1H)              |                     | 1 (1C)              |                 | 1 (1L)              |                      |
| PL                       | 1 (1L)              |                     |                     |                 |                     |                      |
| РТ                       |                     | 1 (1C)              |                     |                 |                     |                      |
| SI                       |                     |                     | 1 (1H)              |                 |                     |                      |
| UK                       | 2 (2C)<br>1 (1H)    | 1 (1C)              | 1 (1C)<br>1 (1H)    |                 |                     | 1(1C)                |
| ΝΟ                       |                     |                     | 1 (1H)              |                 |                     |                      |
| 9 (9C)-<br>30 (17H, 13L) | 2 (2C)<br>5 (4H-1L) | 3(3C)<br>8 (2H, 6L) | 2 (2C)<br>4 (3H-1L) | 1(1C)<br>4 (4H) | 0(0C)<br>6 (2H, 4L) | 1 (1C)<br>3 (2H, 1L) |



#### 2016-8 TSE REPORTS: SHEEP

**TESTED** 2018 EU: 325,386 in 2018 (+3.4% EU) 2017 EU: 314,547 in 2017 (+10% EU) 2016 EU: 286,351 in 2016

Increase in TSE-infected flocks (+10,680)

CASES 2018 EU - 934: 821 (C) 113 (A) 21% index (99,105) 2017 EU - 933: 843 (C) 104 (A) 25% index (145, 89) 2016 EU - 685: 554 (C) 122 (A) 32% index (112, 106)

EL,ES,IT,RO: 88.6%







#### **2018 TSE REPORT: SHEEP**

**Classical scrapie** 



**Atypical scrapie** 





#### **2016-8 TSE REPORTS: GOATS**

**TESTED** 2018 EU: 138,128 in 2018 (+ ~18%) 2017 EU: 117,268 in 2017 (+ ~6%) 2016 EU: 110,832 in 2016

CASES 2018 EU - 523: 517 (C) 6 (A) 8.4% index (38-6) 2017 EU - 567: 558 (C) 9 (A) 8.6% index (42-7) 2016 EU - 634: 621 (C) 13 (A) 6.8% index (30-13)

CY: from 485 to 382







#### **2018 TSE REPORT: GOATS**

#### **Classical scrapie**

## **Atypical scrapie**







#### **2018 TSE REPORT: CERVIDS**

# TESTED

- 8,185 by 12 reporting countries
- EE,FI,LT,LV,PL,SE (mandatory): 5,110 (62.4%)
- AT,DK,HU,IT,ES,RO: 3,075 (37.6%). RO: 2,387
- NO: 33,037

# CASES

- FI: 1 moose
- NO: 6 reindeer + 1 moose





## **2018 TSE REPORT: CERVIDS**

|         |                        | PSU                         |                                                 | Tested | % Risk |
|---------|------------------------|-----------------------------|-------------------------------------------------|--------|--------|
| Country | Number PSU<br>declared | Number of PSU<br>tested (%) | Median number<br>of cervids tested<br>(min-max) | Total  | Tested |
| EE      | 15                     | 10 <sup>c</sup> (66.6%)     | 4 (1-78)                                        | 217    | 54.4%  |
| FI      | 349                    | 153 (43.8%)                 | 2 (1-44)                                        | 663    | 84.8%  |
| LT      |                        | Not available               |                                                 | 1,835  | 15.2%  |
| LV      | 100                    | 145 (145%)                  | 4 (1-20)                                        | 1,054  | 5.8%   |
| PL      | 16                     | 16 (100%)                   | 63 (8-197)                                      | 1,141  | 75.5%  |
| SE      | 210                    | 54 (25.7%)                  | 2 (1-13)                                        | 200    | 95%    |





#### Collagen:

"means protein-based products derived from hides, skins, bones and tendons of animals" main fibrous structural protein of tendons, bones, cartilages and skins

## Gelatine:

"natural, soluble protein, gelling or non-gelling, and obtained by the partial hydrolysis of collagen produced from bones, hides and skins, tendons and sinews of animals"

Commission Regulation (EU) No 142/2011)





## Collagen:

Main fibrous structural protein of tendons, bones, cartilages and skin

Very large and complex proteinic structure: up to 1400 amino acids Triple helix

Contains 19 different amino acids

Dietary supplements, functional foods, super foods









#### **Gelatine:**

Polymer with a high molecular weight ~300.000 Da White, odourless and tasteless powder Hydrophilic properties: gelling, thickening Easy to digest, low calorific value (<4 kcal/g) Contains 18 different amino acids Dairy, bakery products, pet food Protects vitamins enriching food/feed from light and oxygen







For the production of collagen/gelatine intended for use in food:

- hides and skins of farmed ruminant animals
- "derived from animals which have been slaughtered in a slaughterhouse and whose carcases have been found fit for human consumption following ante-mortem and post-mortem inspection"

Section XIV, Annex III, Regulation (EC) No 853/2004





Regulation (EC) No 1069/2009

Category 3 material shall comprise the following **animal byproducts**:

b) hides and skins, including trimmings and splitting thereof, horns and feet, including the phalanges and the carpus and metacarpus bones, tarsus and metatarsus bones, of...

ruminants which have been tested with a negative result in accordance with Article 6(1) of Regulation (EC) No 999/2001

n) hides and skins, hooves, feathers, wool, horns, hair and fur originating from dead animals that did not show any signs of disease communicable through that product to humans or animals, other than those referred to in point (b) of this Article





- Continue revision of the feed ban (TSE Road Map 2)
- 100.000 tonnes of foodstuffs containing ruminant collagen and/or gelatine currently go for disposal and therefore underutilized
- EU protein deficit due to EU legislation on TSE and food and feed controls.
- Assess the BSE risk posed to animals by the authorisation to feed non-ruminant farmed animals including fish with collagen and gelatine derived from ruminants





**FEED** 

| PAP and constituents of animal<br>origin                                               | Ruminants | Un weaned<br>ruminants | Non<br>ruminants | Aquaculture | Pets and fur<br>animals |
|----------------------------------------------------------------------------------------|-----------|------------------------|------------------|-------------|-------------------------|
| Ruminant PAP (ruminant blood<br>included                                               | UA        | UA                     | UA               | UA          | A                       |
| Non-ruminant PAP                                                                       | UA        | UA                     | UA               | A           | Α                       |
| Non-ruminant blood meal                                                                | UA        | UA                     | UA               | Α           | Α                       |
| Insect PAP                                                                             | UA        | UA                     | UA               | Α           |                         |
| Fishmeal                                                                               | UA        | A                      | Α                | A           | Α                       |
| Ruminant collagen and gelatine                                                         | UA        | UA                     | UA               | UA          | A                       |
| Non-ruminant collagen and<br>gelatine                                                  | A         | A                      | A                | A           | A                       |
| Ruminant blood products                                                                | UA        | UA                     | UA               | UA          | A                       |
| Non-ruminant blood products                                                            | UA        | UA                     | A                | Α           | Α                       |
| Hydrolysed proteins from<br>ruminants other than those<br>derived from hides and skins | UA        | UA                     | UA               | UA          | A                       |
| Hydrolysed proteins from non-<br>ruminants                                             | A         | A                      | A                | A           | A                       |
| Hydrolysed proteins from<br>ruminants derived from hides<br>and skins                  | A         | A                      | A                | A           | A                       |
| Di and tricalcium phosphate of<br>animal origin                                        | UA        | UA                     | A                | A           | A                       |
| Milk and milk products                                                                 | Α         | Α                      | Α                | Α           | Α                       |
| Colostrum and derivates                                                                | Α         | Α                      | Α                | Α           | Α                       |
| Eggs and egg products                                                                  | Α         | Α                      | Α                | Α           | Α                       |

UA: unauthorised; A: authorised.





#### **COLLAGEN & GELATINE: TORS**

# ToR1

To estimate the cattle BSE risk (C-, L- and H-BSE) pose e use of september ature animals ruminant collagen/gelatine produced in accordance ction XIV and XV of Annex III to Regulation (EC) No 853/2 **DOD**) in feed intended for non-ruminant animals including

# ToR2

To estimate the cattle BSE risk (C H-BSE) posed by the use of s Category 3 (ABP) as referred ruminant collagen/gelatine cla No 1069/2009 and produced in to in Article 10 of Regulation Deadlinei accordance with Regulat No 142/2011 for feed intended for ang aquaculture animals. non-ruminant anima





# Thank you



European Food Safety Authority

#### Angel Ortiz Pelaez Senior Scientific Officer Unit on Biological Hazards and Contaminants Risk Assessment & Scientific Assistance Via Carlo Magno 1A 43126 Parma (Italy) Tel. +39 0521 036 640 www.efsa.europa.eu





# <u>ש</u>

#### **Subscribe to**

www.efsa.europa.eu/en/news/newsletters www.efsa.europa.eu/en/rss

**Engage with careers** 

www.efsa.europa.eu/en/engage/careers



#### Follow us on Twitter

@efsa\_eu
@plants\_efsa
@methods\_efsa